Title: | A tidy interface for rgeoda |
---|---|
Description: | An interface for 'rgeoda' to integrate with 'sf' objects and the 'tidyverse'. |
Authors: | Wenbo Lv [aut, cre] |
Maintainer: | Wenbo Lv <[email protected]> |
License: | GPL-3 |
Version: | 0.1.1 |
Built: | 2025-01-14 02:40:00 UTC |
Source: | https://github.com/SpatLyu/tidyrgeoda |
Data of Social Space Quality Score in Guangzhou Metropolitan Areas of China (2010). The actual
representation of each column is as follows:
SName_EN
street name; DName_EN
district name;
SSQ_Score
total score of social space quality; PS_Score
population stability score;
EL_Score
educational level score; OH_Score
occupational hierarchy score;
IL_Score
income level score; FPOP_Pro
proportion of foreign population;
TenantsPro
proportion of tenants; NoSchPro
proportion of no schooling;
PSchPRO
proportion of primary school education; JHSchPro
proportion of junior high school education;
HSchDipPro
proportion of high school diploma; CDegreePro
proportion of college degree;
UnderG_Pro
proportion of undergraduate; PostG_Pro
proportion of postgraduate;
RPSOPMOPro
proportion of responsible persons of state organs, party and mass organizations and institutions;
PCE_Pro
proportion of person in charge of enterprise; ProTechPro
proportion of professional and technical personnel;
ClerkPro
proportion of clerk; BusSer_Pro
proportion of business and service personnel;
AFAFP_Pro
proportion of agriculture, forestry, animal husbandry and fishery personnel;
OPTE_Pro
proportion of operators of production and transportation equipment;
UnemPeoPro
proportion of households with unemployed people;
B100_Pro
proportion of households with below 100 yuan;
100_200Pro
proportion of households with 100-200yuan;
200_500Pro
proportion of households with 200-500yuan;
500_1000P
proportion of households with 500-1000yuan;
1000_1500P
proportion of households with 1000-1500yuan;
1500_2000P
proportion of households with 1500-2000yuan;
2000_3000P
proportion of households with 2000-3000yuan;
A3000_Pro
proportion of households with above 3000yuan;
The subdistrict boundary is drawn by with reference to the Atlas of Community Network ResponsibilityDistrict of Urban Management Division in Guangzhou.
gzma
gzma
gzma
: An sf
tibble of social space quality score in guangzhou metropolitan
areas(2010) with 118 rows and 32 variables, where the last column is geometry
.
WANG Yang, ZHANG Hong’ou, YE Yuyao, WU Qitao, JIN Lixia. Comprehensive Evaluation and Distribution Pattern of Social Space Quality in Guangzhou, China. Tropical Geography.
Create a spatial weights object from a geoda file
read_geoda(file_path, id_vec = NULL)
read_geoda(file_path, id_vec = NULL)
file_path |
The file paht of the geoda file. |
id_vec |
(optional),the id_vec is the id values used in the geoda file. |
A weights object
Wenbo Lv [email protected]
Provide ggplot2
fill scales like geoda software.Now it achieve by using
?ggplot2::scale_fill_manual()
.Another achieve can see
https://stackoverflow.com/questions/43440068/ggplot2-fix-colors-to-factor-l.
scale_fill_lisa(name = "LISA", ...)
scale_fill_lisa(name = "LISA", ...)
name |
The name of the LISA fill scales legend,default is |
... |
Adjust other legend details for the LISA fill scales, like |
Wenbo Lv [email protected]
library(sf) library(ggplot2) guerry_path = system.file("extdata", "Guerry.shp", package = "rgeoda") guerry = read_sf(guerry_path) guerry |> dplyr::mutate(lisa = st_local_moran(guerry,'Crm_prs')) |> dplyr::select(lisa) |> ggplot() + geom_sf(aes(fill = lisa),lwd = .1,color = 'grey') + scale_fill_lisa()
library(sf) library(ggplot2) guerry_path = system.file("extdata", "Guerry.shp", package = "rgeoda") guerry = read_sf(guerry_path) guerry |> dplyr::mutate(lisa = st_local_moran(guerry,'Crm_prs')) |> dplyr::select(lisa) |> ggplot() + geom_sf(aes(fill = lisa),lwd = .1,color = 'grey') + scale_fill_lisa()
A wrapper function for rgeoda::azp_greedy()
.The automatic zoning procedure (AZP) was
initially outlined in Openshaw (1977) as a way to address some of the consequences of
the modifiable areal unit problem (MAUP). In essence, it consists of a heuristic to
find the best set of combinations of contiguous spatial units into p regions, minimizing
the within sum of squares as a criterion of homogeneity. The number of regions needs to
be specified beforehand.
st_azp_greedy( sfj, varcol, k, wt = NULL, boundvar = NULL, min_bound = 0, inits = 0, initial_regions = vector("numeric"), scale_method = "standardize", distance_method = "euclidean", seed = 123456789, rdist = numeric() )
st_azp_greedy( sfj, varcol, k, wt = NULL, boundvar = NULL, min_bound = 0, inits = 0, initial_regions = vector("numeric"), scale_method = "standardize", distance_method = "euclidean", seed = 123456789, rdist = numeric() )
sfj |
An sf (simple feature) object. |
varcol |
The variable selected to calculate spatial lag, which is a character. |
k |
The number of clusters. |
wt |
(optional) The spatial weights object,which can use |
boundvar |
(optional) A data frame / tibble with selected bound variable. |
min_bound |
(optional) A minimum bound value that applies to all clusters. |
inits |
(optional) The number of construction re-runs, which is for ARiSeL "automatic regionalization with initial seed location". |
initial_regions |
(optional) The initial regions that the local search starts with. Default is empty. means the local search starts with a random process to "grow" clusters. |
scale_method |
(optional) One of the scaling methods 'raw', 'standardize', 'demean', 'mad', 'range_standardize', 'range_adjust' to apply on input data. Default is 'standardize' (Z-score normalization). |
distance_method |
(optional) The distance method used to compute the distance betwen observation i and j. Defaults to "euclidean". Options are "euclidean" and "manhattan" |
seed |
(optional) The seed for random number generator. Defaults to 123456789. |
rdist |
(optional) The distance matrix (lower triangular matrix, column wise storage). |
A names list with names "Clusters", "Total sum of squares", "Within-cluster sum of squares", "Total within-cluster sum of squares", and "The ratio of between to total sum of squares".
Wenbo Lv [email protected]
library(sf) guerry = read_sf(system.file("extdata", "Guerry.shp", package = "rgeoda")) guerry_clusters = st_azp_greedy(guerry,c('Crm_prs','Crm_prp','Litercy', 'Donatns','Infants','Suicids'),5) guerry_clusters
library(sf) guerry = read_sf(system.file("extdata", "Guerry.shp", package = "rgeoda")) guerry_clusters = st_azp_greedy(guerry,c('Crm_prs','Crm_prp','Litercy', 'Donatns','Infants','Suicids'),5) guerry_clusters
A wrapper function for rgeoda::azp_sa()
.The automatic zoning procedure (AZP) was
initially outlined in Openshaw (1977) as a way to address some of the consequences of
the modifiable areal unit problem (MAUP). In essence, it consists of a heuristic to
find the best set of combinations of contiguous spatial units into p regions, minimizing
the within sum of squares as a criterion of homogeneity. The number of regions needs to
be specified beforehand.
st_azp_sa( sfj, varcol, k, wt = NULL, boundvar = NULL, cooling_rate = 0.85, sa_maxit = 1, min_bound = 0, inits = 0, initial_regions = vector("numeric"), scale_method = "standardize", distance_method = "euclidean", seed = 123456789, rdist = numeric() )
st_azp_sa( sfj, varcol, k, wt = NULL, boundvar = NULL, cooling_rate = 0.85, sa_maxit = 1, min_bound = 0, inits = 0, initial_regions = vector("numeric"), scale_method = "standardize", distance_method = "euclidean", seed = 123456789, rdist = numeric() )
sfj |
An sf (simple feature) object. |
varcol |
The variable selected to calculate spatial lag, which is a character. |
k |
The number of clusters. |
wt |
(optional) The spatial weights object,which can use |
boundvar |
(optional) A data frame / tibble with selected bound variable. |
cooling_rate |
(optional) The cooling rate of a simulated annealing algorithm. Defaults to 0.85. |
sa_maxit |
(optional) The number of iterations of simulated annealing. Defaults to 1. |
min_bound |
(optional) A minimum bound value that applies to all clusters. |
inits |
(optional) The number of construction re-runs, which is for ARiSeL "automatic regionalization with initial seed location". |
initial_regions |
(optional) The initial regions that the local search starts with. Default is empty. means the local search starts with a random process to "grow" clusters. |
scale_method |
(optional) One of the scaling methods 'raw', 'standardize', 'demean', 'mad', 'range_standardize', 'range_adjust' to apply on input data. Default is 'standardize' (Z-score normalization). |
distance_method |
(optional) The distance method used to compute the distance betwen observation i and j. Defaults to "euclidean". Options are "euclidean" and "manhattan" |
seed |
(optional) The seed for random number generator. Defaults to 123456789. |
rdist |
(optional) The distance matrix (lower triangular matrix, column wise storage). |
A names list with names "Clusters", "Total sum of squares", "Within-cluster sum of squares", "Total within-cluster sum of squares", and "The ratio of between to total sum of squares".
Wenbo Lv [email protected]
library(sf) guerry = read_sf(system.file("extdata", "Guerry.shp", package = "rgeoda")) guerry_clusters = st_azp_sa(guerry,c('Crm_prs','Crm_prp','Litercy','Donatns', 'Infants','Suicids'),5) guerry_clusters
library(sf) guerry = read_sf(system.file("extdata", "Guerry.shp", package = "rgeoda")) guerry_clusters = st_azp_sa(guerry,c('Crm_prs','Crm_prp','Litercy','Donatns', 'Infants','Suicids'),5) guerry_clusters
A wrapper function for rgeoda::azp_tabu()
.The automatic zoning procedure (AZP) was
initially outlined in Openshaw (1977) as a way to address some of the consequences of
the modifiable areal unit problem (MAUP). In essence, it consists of a heuristic to
find the best set of combinations of contiguous spatial units into p regions, minimizing
the within sum of squares as a criterion of homogeneity. The number of regions needs to
be specified beforehand.
st_azp_tabu( sfj, varcol, k, wt = NULL, boundvar = NULL, tabu_length = 10, conv_tabu = 10, min_bound = 0, inits = 0, initial_regions = vector("numeric"), scale_method = "standardize", distance_method = "euclidean", seed = 123456789, rdist = numeric() )
st_azp_tabu( sfj, varcol, k, wt = NULL, boundvar = NULL, tabu_length = 10, conv_tabu = 10, min_bound = 0, inits = 0, initial_regions = vector("numeric"), scale_method = "standardize", distance_method = "euclidean", seed = 123456789, rdist = numeric() )
sfj |
An sf (simple feature) object. |
varcol |
The variable selected to calculate spatial lag, which is a character. |
k |
The number of clusters. |
wt |
(optional) The spatial weights object,which can use |
boundvar |
(optional) A data frame / tibble with selected bound variable. |
tabu_length |
(optional) The length of a tabu search heuristic of tabu algorithm. Defaults to 10. |
conv_tabu |
(optional): The number of non-improving moves. Defaults to 10. |
min_bound |
(optional) A minimum bound value that applies to all clusters. |
inits |
(optional) The number of construction re-runs, which is for ARiSeL "automatic regionalization with initial seed location". |
initial_regions |
(optional) The initial regions that the local search starts with. Default is empty. means the local search starts with a random process to "grow" clusters. |
scale_method |
(optional) One of the scaling methods 'raw', 'standardize', 'demean', 'mad', 'range_standardize', 'range_adjust' to apply on input data. Default is 'standardize' (Z-score normalization). |
distance_method |
(optional) The distance method used to compute the distance betwen observation i and j. Defaults to "euclidean". Options are "euclidean" and "manhattan" |
seed |
(optional) The seed for random number generator. Defaults to 123456789. |
rdist |
(optional) The distance matrix (lower triangular matrix, column wise storage). |
A names list with names "Clusters", "Total sum of squares", "Within-cluster sum of squares", "Total within-cluster sum of squares", and "The ratio of between to total sum of squares".
Wenbo Lv [email protected]
library(sf) guerry = read_sf(system.file("extdata", "Guerry.shp", package = "rgeoda")) guerry_clusters = st_azp_tabu(guerry,c('Crm_prs','Crm_prp','Litercy','Donatns', 'Infants','Suicids'),5) guerry_clusters
library(sf) guerry = read_sf(system.file("extdata", "Guerry.shp", package = "rgeoda")) guerry_clusters = st_azp_tabu(guerry,c('Crm_prs','Crm_prp','Litercy','Donatns', 'Infants','Suicids'),5) guerry_clusters
Univariate Spatial Stratification by invoking rgeoda's *_breaks function.
st_breaks(sfj, varcol, break_method = "stddev", k = 6)
st_breaks(sfj, varcol, break_method = "stddev", k = 6)
sfj |
An sf, tibble or data.frame object |
varcol |
The variables selected to run univariate spatial stratification. |
break_method |
(optional) Which has to be one of "stddev"(default), "hinge15",
"hinge30", "percentile", "natural", "quantile". When the |
k |
(optional)A numeric value indicates how many breaks,default is 6. |
A vector of numeric values of computed breaks
Wenbo Lv [email protected]
library(sf) guerry = read_sf(system.file("extdata", "Guerry.shp", package = "rgeoda")) st_breaks(guerry,'Crm_prs',break_method = "quantile", k = 5)
library(sf) guerry = read_sf(system.file("extdata", "Guerry.shp", package = "rgeoda")) st_breaks(guerry,'Crm_prs',break_method = "quantile", k = 5)
Create a contiguity spatial weights with options of "queen", "order", "include lower order" and "precision threshold"
st_contiguity_weights( sfj, queen = TRUE, order = 1, include_lower_order = FALSE, precision_threshold = 0 )
st_contiguity_weights( sfj, queen = TRUE, order = 1, include_lower_order = FALSE, precision_threshold = 0 )
sfj |
An sf (simple feature) object. |
queen |
(Optional) TRUE (default) or FALSE, TRUE implements Queen Contiguity and FALSE implements Rook Contiguity. |
order |
(Optional) Order of contiguity, default is 1. |
include_lower_order |
(Optional) Whether or not the lower order neighbors should be included in the weights structure,default is False. |
precision_threshold |
(Optional) The precision of the underlying shape file is insufficient to allow for an exact match of coordinates to determine which polygons are neighbors,default is 0. |
An instance of rgeoda Weight-class.
Wenbo Lv [email protected]
guerry_path = system.file("extdata", "Guerry.shp", package = "rgeoda") guerry = sf::read_sf(guerry_path) queenw = st_contiguity_weights(guerry,queen = TRUE)
guerry_path = system.file("extdata", "Guerry.shp", package = "rgeoda") guerry = sf::read_sf(guerry_path) queenw = st_contiguity_weights(guerry,queen = TRUE)
Create a distance-based weights
st_distance_weights( sfj, unit = "km", dist_thres = NULL, power = 1, is_inverse = FALSE )
st_distance_weights( sfj, unit = "km", dist_thres = NULL, power = 1, is_inverse = FALSE )
sfj |
An sf (simple feature) object. |
unit |
(optional) The unit for calculating spatial distance, can be 'km'(default) or 'mile'. |
dist_thres |
(optional) A positive numeric value of distance threshold. |
power |
(optional) The power (or exponent) of a number indicates how many times to use the number in a multiplication.Default is 1. |
is_inverse |
(optional) FALSE (default) or TRUE, apply inverse on distance value. |
An instance of rgeoda Weight-class.
Wenbo Lv [email protected]
guerry_path = system.file("extdata", "Guerry.shp", package = "rgeoda") guerry = sf::read_sf(guerry_path) st_distance_weights(guerry)
guerry_path = system.file("extdata", "Guerry.shp", package = "rgeoda") guerry = sf::read_sf(guerry_path) st_distance_weights(guerry)
Create a kernel weights by specifying k-nearest neighbors and a kernel method
st_kernel_knn_weights( sfj, k, kernel = "gaussian", power = 1, adaptive_bandwidth = TRUE, use_kernel_diagonals = FALSE, is_inverse = FALSE, unit = "km" )
st_kernel_knn_weights( sfj, k, kernel = "gaussian", power = 1, adaptive_bandwidth = TRUE, use_kernel_diagonals = FALSE, is_inverse = FALSE, unit = "km" )
sfj |
An sf (simple feature) object. |
k |
A positive integer number for k-nearest neighbors. |
kernel |
(optional) A string value, which has to be one of 'triangular', 'uniform', 'epanechnikov', 'quartic', 'gaussian'(default). |
power |
(optional) The power (or exponent) of a number indicates how many times to use the number in a multiplication.Default is 1. |
adaptive_bandwidth |
(optional) TRUE (default) or FALSE: TRUE use adaptive bandwidth calculated using distance of k-nearest neithbors, FALSE use max distance of all observation to their k-nearest neighbors. |
use_kernel_diagonals |
(optional) FALSE (default) or TRUE, apply kernel on the diagonal of weights matrix. |
is_inverse |
(optional) FALSE (default) or TRUE, apply inverse on distance value. |
unit |
(optional) The unit for calculating spatial distance, can be 'km'(default) or 'mile'. |
An instance of rgeoda Weight-class.
Wenbo Lv [email protected]
guerry_path = system.file("extdata", "Guerry.shp", package = "rgeoda") guerry = sf::read_sf(guerry_path) st_kernel_knn_weights(guerry,6)
guerry_path = system.file("extdata", "Guerry.shp", package = "rgeoda") guerry = sf::read_sf(guerry_path) st_kernel_knn_weights(guerry,6)
Create a kernel weights by specifying a bandwidth and a kernel method
st_kernel_weights( sfj, kernel = "gaussian", bandwidth = NULL, power = 1, use_kernel_diagonals = FALSE, is_inverse = FALSE, unit = "km" )
st_kernel_weights( sfj, kernel = "gaussian", bandwidth = NULL, power = 1, use_kernel_diagonals = FALSE, is_inverse = FALSE, unit = "km" )
sfj |
An sf (simple feature) object. |
kernel |
(optional) A string value, which has to be one of 'triangular', 'uniform', 'epanechnikov', 'quartic', 'gaussian'(default). |
bandwidth |
(optional) A positive numeric value of bandwidth. |
power |
(optional) The power (or exponent) of a number indicates how many times to use the number in a multiplication.Default is 1. |
use_kernel_diagonals |
(optional) FALSE (default) or TRUE, apply kernel on the diagonal of weights matrix. |
is_inverse |
(optional) FALSE (default) or TRUE, apply inverse on distance value. |
unit |
(optional) The unit for calculating spatial distance, can be 'km'(default) or 'mile'. |
An instance of rgeoda Weight-class.
Wenbo Lv [email protected]
guerry_path = system.file("extdata", "Guerry.shp", package = "rgeoda") guerry = sf::read_sf(guerry_path) st_kernel_weights(guerry)
guerry_path = system.file("extdata", "Guerry.shp", package = "rgeoda") guerry = sf::read_sf(guerry_path) st_kernel_weights(guerry)
Create a k-nearest neighbors based spatial weights
st_knn_weights(sfj, k, power = 1, is_inverse = FALSE, unit = "km")
st_knn_weights(sfj, k, power = 1, is_inverse = FALSE, unit = "km")
sfj |
An sf (simple feature) object. |
k |
A positive integer number for k-nearest neighbors. |
power |
(optional) The power (or exponent) of a number indicates how many times to use the number in a multiplication.Default is 1. |
is_inverse |
(optional) FALSE (default) or TRUE, apply inverse on distance value. |
unit |
(optional) The unit for calculating spatial distance, can be 'km'(default) or 'mile'. |
An instance of rgeoda Weight-class.
Wenbo Lv [email protected]
guerry_path = system.file("extdata", "Guerry.shp", package = "rgeoda") guerry = sf::read_sf(guerry_path) st_knn_weights(guerry,3)
guerry_path = system.file("extdata", "Guerry.shp", package = "rgeoda") guerry = sf::read_sf(guerry_path) st_knn_weights(guerry,3)
Compute the spatial lag for idx-th observation using selected variable and spatial weights matrix
st_lag(sfj, varcol, wt = NULL)
st_lag(sfj, varcol, wt = NULL)
sfj |
An sf (simple feature) object. |
varcol |
The variable selected to calculate spatial lag, which is a character. |
wt |
(optional) The spatial weights object,which can use |
A numeric vector.
Wenbo Lv [email protected]
guerry_path = system.file("extdata", "Guerry.shp", package = "rgeoda") guerry = sf::read_sf(guerry_path) st_lag(guerry,'Pop1831')
guerry_path = system.file("extdata", "Guerry.shp", package = "rgeoda") guerry = sf::read_sf(guerry_path) st_lag(guerry,'Pop1831')
The local neighbor match test is to assess the extent of overlap between k-nearest neighbors in geographical space and k-nearest neighbors in multi-attribute space.
st_lnmt( sfj, varcol, k, unit = "km", scale_method = "standardize", distance_method = "euclidean", power = 1, is_inverse = FALSE )
st_lnmt( sfj, varcol, k, unit = "km", scale_method = "standardize", distance_method = "euclidean", power = 1, is_inverse = FALSE )
sfj |
An sf (simple feature) object. |
varcol |
The variables selected to run local neighbor match test. |
k |
A positive integer number for k-nearest neighbors searching. |
unit |
(optional) The unit for calculating spatial distance, can be 'km'(default) or 'mile'. |
scale_method |
(optional) One of the scaling methods 'raw', 'standardize', 'demean', 'mad', 'range_standardize', 'range_adjust' to apply on input data. Default is 'standardize' (Z-score normalization). |
distance_method |
(optional) The type of distance metrics used to measure the distance between input data. Options are 'euclidean', 'manhattan'. Default is 'euclidean'. |
power |
(optional) The power (or exponent) of a number says how many times to use the number in a multiplication. |
is_inverse |
(optional) FALSE (default) or TRUE, apply inverse on distance value. |
A tibble with two columns "Cardinality" and "Probability".
Wenbo Lv [email protected]
library(sf) guerry = read_sf(system.file("extdata","Guerry.shp",package = "rgeoda")) st_lnmt(guerry,c('Crm_prs','Crm_prp','Litercy','Donatns', 'Infants','Suicids'),6)
library(sf) guerry = read_sf(system.file("extdata","Guerry.shp",package = "rgeoda")) st_lnmt(guerry,c('Crm_prs','Crm_prp','Litercy','Donatns', 'Infants','Suicids'),6)
Function to apply local Bivariate Join Count statistics
st_local_bijoincount( sfj, varcol, wt = NULL, permutations = 999, permutation_method = "complete", significance_cutoff = 0.05, cpu_threads = 6, seed = 123456789 )
st_local_bijoincount( sfj, varcol, wt = NULL, permutations = 999, permutation_method = "complete", significance_cutoff = 0.05, cpu_threads = 6, seed = 123456789 )
sfj |
An sf (simple feature) object. |
varcol |
The variable selected to calculate spatial lag, which is a character. |
wt |
(optional) The spatial weights object,which can use |
permutations |
(optional) The number of permutations for the LISA computation. |
permutation_method |
(optional) The permutation method used for the LISA computation. Options are 'complete', 'lookup'. Default is 'complete'. |
significance_cutoff |
(optional) A cutoff value for significance p-values to filter not-significant clusters. |
cpu_threads |
(optional) The number of cpu threads used for parallel LISA computation. |
seed |
(optional) The seed for random number generator. |
A factor vector.
Wenbo Lv [email protected]
library(magrittr) guerry_path = system.file("extdata", "Guerry.shp", package = "rgeoda") guerry = sf::read_sf(guerry_path) %>% dplyr::mutate(InvCrm = 1 - TopCrm) st_local_bijoincount(guerry,c("TopCrm", "InvCrm"))
library(magrittr) guerry_path = system.file("extdata", "Guerry.shp", package = "rgeoda") guerry = sf::read_sf(guerry_path) %>% dplyr::mutate(InvCrm = 1 - TopCrm) st_local_bijoincount(guerry,c("TopCrm", "InvCrm"))
Function to apply bivariate local Moran statistics
st_local_bimoran( sfj, varcol, wt = NULL, permutations = 999, permutation_method = "complete", significance_cutoff = 0.05, cpu_threads = 6, seed = 123456789 )
st_local_bimoran( sfj, varcol, wt = NULL, permutations = 999, permutation_method = "complete", significance_cutoff = 0.05, cpu_threads = 6, seed = 123456789 )
sfj |
An sf (simple feature) object. |
varcol |
The variable selected to calculate spatial lag, which is a character. |
wt |
(optional) The spatial weights object,which can use |
permutations |
(optional) The number of permutations for the LISA computation. |
permutation_method |
(optional) The permutation method used for the LISA computation. Options are 'complete', 'lookup'. Default is 'complete'. |
significance_cutoff |
(optional) A cutoff value for significance p-values to filter not-significant clusters. |
cpu_threads |
(optional) The number of cpu threads used for parallel LISA computation. |
seed |
(optional) The seed for random number generator. |
A factor vector.
Wenbo Lv [email protected]
guerry_path = system.file("extdata", "Guerry.shp", package = "rgeoda") guerry = sf::read_sf(guerry_path) st_local_bimoran(guerry,c('Crm_prs','Litercy'))
guerry_path = system.file("extdata", "Guerry.shp", package = "rgeoda") guerry = sf::read_sf(guerry_path) st_local_bimoran(guerry,c('Crm_prs','Litercy'))
Function to apply Getis-Ord's local G statistics
st_local_g( sfj, varcol, wt = NULL, permutations = 999, permutation_method = "complete", significance_cutoff = 0.05, cpu_threads = 6, seed = 123456789 )
st_local_g( sfj, varcol, wt = NULL, permutations = 999, permutation_method = "complete", significance_cutoff = 0.05, cpu_threads = 6, seed = 123456789 )
sfj |
An sf (simple feature) object. |
varcol |
The variable selected to calculate spatial lag, which is a character. |
wt |
(optional) The spatial weights object,which can use |
permutations |
(optional) The number of permutations for the LISA computation. |
permutation_method |
(optional) The permutation method used for the LISA computation. Options are 'complete', 'lookup'. Default is 'complete'. |
significance_cutoff |
(optional) A cutoff value for significance p-values to filter not-significant clusters. |
cpu_threads |
(optional) The number of cpu threads used for parallel LISA computation. |
seed |
(optional) The seed for random number generator. |
A factor vector.
Wenbo Lv [email protected]
guerry_path = system.file("extdata", "Guerry.shp", package = "rgeoda") guerry = sf::read_sf(guerry_path) st_local_g(guerry,'Crm_prp')
guerry_path = system.file("extdata", "Guerry.shp", package = "rgeoda") guerry = sf::read_sf(guerry_path) st_local_g(guerry,'Crm_prp')
Function to apply local Geary statistics
st_local_geary( sfj, varcol, wt = NULL, permutations = 999, permutation_method = "complete", significance_cutoff = 0.05, cpu_threads = 6, seed = 123456789 )
st_local_geary( sfj, varcol, wt = NULL, permutations = 999, permutation_method = "complete", significance_cutoff = 0.05, cpu_threads = 6, seed = 123456789 )
sfj |
An sf (simple feature) object. |
varcol |
The variable selected to calculate spatial lag, which is a character. |
wt |
(optional) The spatial weights object,which can use |
permutations |
(optional) The number of permutations for the LISA computation. |
permutation_method |
(optional) The permutation method used for the LISA computation. Options are 'complete', 'lookup'. Default is 'complete'. |
significance_cutoff |
(optional) A cutoff value for significance p-values to filter not-significant clusters. |
cpu_threads |
(optional) The number of cpu threads used for parallel LISA computation. |
seed |
(optional) The seed for random number generator. |
A factor vector.
Wenbo Lv [email protected]
guerry_path = system.file("extdata", "Guerry.shp", package = "rgeoda") guerry = sf::read_sf(guerry_path) st_local_geary(guerry,'Crm_prp')
guerry_path = system.file("extdata", "Guerry.shp", package = "rgeoda") guerry = sf::read_sf(guerry_path) st_local_geary(guerry,'Crm_prp')
Function to apply Getis-Ord's local G*statistics
st_local_gstar( sfj, varcol, wt = NULL, permutations = 999, permutation_method = "complete", significance_cutoff = 0.05, cpu_threads = 6, seed = 123456789 )
st_local_gstar( sfj, varcol, wt = NULL, permutations = 999, permutation_method = "complete", significance_cutoff = 0.05, cpu_threads = 6, seed = 123456789 )
sfj |
An sf (simple feature) object. |
varcol |
The variable selected to calculate spatial lag, which is a character. |
wt |
(optional) The spatial weights object,which can use |
permutations |
(optional) The number of permutations for the LISA computation. |
permutation_method |
(optional) The permutation method used for the LISA computation. Options are 'complete', 'lookup'. Default is 'complete'. |
significance_cutoff |
(optional) A cutoff value for significance p-values to filter not-significant clusters. |
cpu_threads |
(optional) The number of cpu threads used for parallel LISA computation. |
seed |
(optional) The seed for random number generator. |
A factor vector.
Wenbo Lv [email protected]
guerry_path = system.file("extdata", "Guerry.shp", package = "rgeoda") guerry = sf::read_sf(guerry_path) st_local_gstar(guerry,'Crm_prp')
guerry_path = system.file("extdata", "Guerry.shp", package = "rgeoda") guerry = sf::read_sf(guerry_path) st_local_gstar(guerry,'Crm_prp')
Function to apply local Join Count statistics
st_local_joincount( sfj, varcol, wt = NULL, permutations = 999, permutation_method = "complete", significance_cutoff = 0.05, cpu_threads = 6, seed = 123456789 )
st_local_joincount( sfj, varcol, wt = NULL, permutations = 999, permutation_method = "complete", significance_cutoff = 0.05, cpu_threads = 6, seed = 123456789 )
sfj |
An sf (simple feature) object. |
varcol |
The variable selected to calculate spatial lag, which is a character. |
wt |
(optional) The spatial weights object,which can use |
permutations |
(optional) The number of permutations for the LISA computation. |
permutation_method |
(optional) The permutation method used for the LISA computation. Options are 'complete', 'lookup'. Default is 'complete'. |
significance_cutoff |
(optional) A cutoff value for significance p-values to filter not-significant clusters. |
cpu_threads |
(optional) The number of cpu threads used for parallel LISA computation. |
seed |
(optional) The seed for random number generator. |
A factor vector.
Wenbo Lv [email protected]
guerry_path = system.file("extdata", "Guerry.shp", package = "rgeoda") guerry = sf::read_sf(guerry_path) st_local_joincount(guerry,'Crm_prp')
guerry_path = system.file("extdata", "Guerry.shp", package = "rgeoda") guerry = sf::read_sf(guerry_path) st_local_joincount(guerry,'Crm_prp')
Function to apply local Moran statistics
st_local_moran( sfj, varcol, wt = NULL, permutations = 999, permutation_method = "complete", significance_cutoff = 0.05, cpu_threads = 6, seed = 123456789 )
st_local_moran( sfj, varcol, wt = NULL, permutations = 999, permutation_method = "complete", significance_cutoff = 0.05, cpu_threads = 6, seed = 123456789 )
sfj |
An sf (simple feature) object. |
varcol |
The variable selected to calculate spatial lag, which is a character. |
wt |
(optional) The spatial weights object,which can use |
permutations |
(optional) The number of permutations for the LISA computation. |
permutation_method |
(optional) The permutation method used for the LISA computation. Options are 'complete', 'lookup'. Default is 'complete'. |
significance_cutoff |
(optional) A cutoff value for significance p-values to filter not-significant clusters. |
cpu_threads |
(optional) The number of cpu threads used for parallel LISA computation. |
seed |
(optional) The seed for random number generator. |
A factor vector.
Wenbo Lv [email protected]
guerry_path = system.file("extdata", "Guerry.shp", package = "rgeoda") guerry = sf::read_sf(guerry_path) st_local_moran(guerry,'Crm_prp')
guerry_path = system.file("extdata", "Guerry.shp", package = "rgeoda") guerry = sf::read_sf(guerry_path) st_local_moran(guerry,'Crm_prp')
Function to apply local Moran with EB Rate statistics. The EB rate is first computed from "event" and "base" variables, and then used in local moran statistics.
st_local_moran_eb( sfj, varcol, wt = NULL, permutations = 999, permutation_method = "complete", significance_cutoff = 0.05, cpu_threads = 6, seed = 123456789 )
st_local_moran_eb( sfj, varcol, wt = NULL, permutations = 999, permutation_method = "complete", significance_cutoff = 0.05, cpu_threads = 6, seed = 123456789 )
sfj |
An sf (simple feature) object. |
varcol |
The variable selected to calculate spatial lag, which is a character. |
wt |
(optional) The spatial weights object,which can use |
permutations |
(optional) The number of permutations for the LISA computation. |
permutation_method |
(optional) The permutation method used for the LISA computation. Options are 'complete', 'lookup'. Default is 'complete'. |
significance_cutoff |
(optional) A cutoff value for significance p-values to filter not-significant clusters. |
cpu_threads |
(optional) The number of cpu threads used for parallel LISA computation. |
seed |
(optional) The seed for random number generator. |
A factor vector.
Wenbo Lv [email protected]
## Not run: guerry_path = system.file("extdata", "Guerry.shp", package = "rgeoda") guerry = sf::read_sf(guerry_path) st_local_moran_eb(guerry,c("hr60", "po60")) ## End(Not run)
## Not run: guerry_path = system.file("extdata", "Guerry.shp", package = "rgeoda") guerry = sf::read_sf(guerry_path) st_local_moran_eb(guerry,c("hr60", "po60")) ## End(Not run)
Function to apply local Multivariate Geary statistics
st_local_multigeary( sfj, varcol, wt = NULL, permutations = 999, permutation_method = "complete", significance_cutoff = 0.05, cpu_threads = 6, seed = 123456789 )
st_local_multigeary( sfj, varcol, wt = NULL, permutations = 999, permutation_method = "complete", significance_cutoff = 0.05, cpu_threads = 6, seed = 123456789 )
sfj |
An sf (simple feature) object. |
varcol |
The variables selected to calculate spatial lag, which is a character vector. |
wt |
(optional) The spatial weights object,which can use |
permutations |
(optional) The number of permutations for the LISA computation. |
permutation_method |
(optional) The permutation method used for the LISA computation. Options are 'complete', 'lookup'. Default is 'complete'. |
significance_cutoff |
(optional) A cutoff value for significance p-values to filter not-significant clusters. |
cpu_threads |
(optional) The number of cpu threads used for parallel LISA computation. |
seed |
(optional) The seed for random number generator. |
A factor vector.
Wenbo Lv [email protected]
guerry_path = system.file("extdata", "Guerry.shp", package = "rgeoda") guerry = sf::read_sf(guerry_path) st_local_multigeary(guerry,c('Crm_prs','Crm_prp','Litercy','Donatns','Infants', 'Suicids'))
guerry_path = system.file("extdata", "Guerry.shp", package = "rgeoda") guerry = sf::read_sf(guerry_path) st_local_multigeary(guerry,c('Crm_prs','Crm_prp','Litercy','Donatns','Infants', 'Suicids'))
Function to apply (multivariate) colocation local Join Count statistics
st_local_multijoincount( sfj, varcol, wt = NULL, permutations = 999, permutation_method = "complete", significance_cutoff = 0.05, cpu_threads = 6, seed = 123456789 )
st_local_multijoincount( sfj, varcol, wt = NULL, permutations = 999, permutation_method = "complete", significance_cutoff = 0.05, cpu_threads = 6, seed = 123456789 )
sfj |
An sf (simple feature) object. |
varcol |
The variable selected to calculate spatial lag, which is a character. |
wt |
(optional) The spatial weights object,which can use |
permutations |
(optional) The number of permutations for the LISA computation. |
permutation_method |
(optional) The permutation method used for the LISA computation. Options are 'complete', 'lookup'. Default is 'complete'. |
significance_cutoff |
(optional) A cutoff value for significance p-values to filter not-significant clusters. |
cpu_threads |
(optional) The number of cpu threads used for parallel LISA computation. |
seed |
(optional) The seed for random number generator. |
A factor vector.
Wenbo Lv [email protected]
guerry_path = system.file("extdata", "Guerry.shp", package = "rgeoda") guerry = sf::read_sf(guerry_path) st_local_multijoincount(guerry,c('TopWealth','TopWealth', 'TopLit'))
guerry_path = system.file("extdata", "Guerry.shp", package = "rgeoda") guerry = sf::read_sf(guerry_path) st_local_multijoincount(guerry,c('TopWealth','TopWealth', 'TopLit'))
Function to apply multivariate quantile LISA statistics
st_local_multiquantilelisa( sfj, varcol, k, q, wt = NULL, permutations = 999, permutation_method = "complete", significance_cutoff = 0.05, cpu_threads = 6, seed = 123456789 )
st_local_multiquantilelisa( sfj, varcol, k, q, wt = NULL, permutations = 999, permutation_method = "complete", significance_cutoff = 0.05, cpu_threads = 6, seed = 123456789 )
sfj |
An sf (simple feature) object. |
varcol |
The variable selected to calculate spatial lag, which is a character. |
k |
A value indicates the number of quantiles. Value range e.g. |
q |
A value indicates which quantile or interval used in local join count statistics. Value stars from 1. |
wt |
(optional) The spatial weights object,which can use |
permutations |
(optional) The number of permutations for the LISA computation. |
permutation_method |
(optional) The permutation method used for the LISA computation. Options are 'complete', 'lookup'. Default is 'complete'. |
significance_cutoff |
(optional) A cutoff value for significance p-values to filter not-significant clusters. |
cpu_threads |
(optional) The number of cpu threads used for parallel LISA computation. |
seed |
(optional) The seed for random number generator. |
A factor vector.
Wenbo Lv [email protected]
guerry_path = system.file("extdata", "Guerry.shp", package = "rgeoda") guerry = sf::read_sf(guerry_path) st_local_multiquantilelisa(guerry,c("Crm_prp", "Litercy"),c(4,4), c(1,1))
guerry_path = system.file("extdata", "Guerry.shp", package = "rgeoda") guerry = sf::read_sf(guerry_path) st_local_multiquantilelisa(guerry,c("Crm_prp", "Litercy"),c(4,4), c(1,1))
Function to apply quantile LISA statistics
st_local_quantilelisa( sfj, varcol, k, q, wt = NULL, permutations = 999, permutation_method = "complete", significance_cutoff = 0.05, cpu_threads = 6, seed = 123456789 )
st_local_quantilelisa( sfj, varcol, k, q, wt = NULL, permutations = 999, permutation_method = "complete", significance_cutoff = 0.05, cpu_threads = 6, seed = 123456789 )
sfj |
An sf (simple feature) object. |
varcol |
The variable selected to calculate spatial lag, which is a character. |
k |
A value indicates the number of quantiles. Value range e.g. |
q |
A value indicates which quantile or interval used in local join count statistics. Value stars from 1. |
wt |
(optional) The spatial weights object,which can use |
permutations |
(optional) The number of permutations for the LISA computation. |
permutation_method |
(optional) The permutation method used for the LISA computation. Options are 'complete', 'lookup'. Default is 'complete'. |
significance_cutoff |
(optional) A cutoff value for significance p-values to filter not-significant clusters. |
cpu_threads |
(optional) The number of cpu threads used for parallel LISA computation. |
seed |
(optional) The seed for random number generator. |
A factor vector.
Wenbo Lv [email protected]
guerry_path = system.file("extdata", "Guerry.shp", package = "rgeoda") guerry = sf::read_sf(guerry_path) st_local_quantilelisa(guerry,"Crm_prs",k = 4, q = 1)
guerry_path = system.file("extdata", "Guerry.shp", package = "rgeoda") guerry = sf::read_sf(guerry_path) st_local_quantilelisa(guerry,"Crm_prs",k = 4, q = 1)
A wrapper function for rgeoda::maxp_greedy()
.The max-p-region problem is a special case
of constrained clustering where a finite number of geographical areas are aggregated into
the maximum number of regions (max-p-regions), such that each region is geographically
connected and the clusters could maximize internal homogeneity.
st_maxp_greedy( sfj, varcol, wt = NULL, boundvar, min_bound, iterations = 99, initial_regions = vector("numeric"), scale_method = "standardize", distance_method = "euclidean", seed = 123456789, cpu_threads = 6, rdist = numeric() )
st_maxp_greedy( sfj, varcol, wt = NULL, boundvar, min_bound, iterations = 99, initial_regions = vector("numeric"), scale_method = "standardize", distance_method = "euclidean", seed = 123456789, cpu_threads = 6, rdist = numeric() )
sfj |
An sf (simple feature) object. |
varcol |
The variable selected to calculate spatial lag, which is a character. |
wt |
(optional) The spatial weights object,which can use |
boundvar |
A numeric vector of selected bounding variable. |
min_bound |
A minimum value that the sum value of bounding variable int each cluster should be greater than. |
iterations |
(optional) The number of iterations of greedy algorithm. Defaults to 99. |
initial_regions |
(optional) The initial regions that the local search starts with. Default is empty. means the local search starts with a random process to "grow" clusters. |
scale_method |
(optional) One of the scaling methods 'raw', 'standardize', 'demean', 'mad', 'range_standardize', 'range_adjust' to apply on input data. Default is 'standardize' (Z-score normalization). |
distance_method |
(optional) The distance method used to compute the distance betwen observation i and j. Defaults to "euclidean". Options are "euclidean" and "manhattan" |
seed |
(optional) The seed for random number generator. Defaults to 123456789. |
cpu_threads |
(optional) The number of cpu threads used for parallel computation.Default is 6. |
rdist |
(optional) The distance matrix (lower triangular matrix, column wise storage). |
A names list with names "Clusters", "Total sum of squares", "Within-cluster sum of squares", "Total within-cluster sum of squares", and "The ratio of between to total sum of squares".
Wenbo Lv [email protected]
library(sf) guerry = read_sf(system.file("extdata", "Guerry.shp", package = "rgeoda")) guerry_clusters = st_maxp_greedy(guerry,c('Crm_prs','Crm_prp','Litercy','Donatns', 'Infants','Suicids'),boundvar = 'Pop1831',min_bound = 3236.67) guerry_clusters
library(sf) guerry = read_sf(system.file("extdata", "Guerry.shp", package = "rgeoda")) guerry_clusters = st_maxp_greedy(guerry,c('Crm_prs','Crm_prp','Litercy','Donatns', 'Infants','Suicids'),boundvar = 'Pop1831',min_bound = 3236.67) guerry_clusters
A wrapper function for rgeoda::maxp_sa()
.The max-p-region problem is a special case
of constrained clustering where a finite number of geographical areas are aggregated into
the maximum number of regions (max-p-regions), such that each region is geographically
connected and the clusters could maximize internal homogeneity.
st_maxp_sa( sfj, varcol, wt = NULL, boundvar, min_bound, cooling_rate = 0.85, sa_maxit = 1, iterations = 99, initial_regions = vector("numeric"), scale_method = "standardize", distance_method = "euclidean", seed = 123456789, cpu_threads = 6, rdist = numeric() )
st_maxp_sa( sfj, varcol, wt = NULL, boundvar, min_bound, cooling_rate = 0.85, sa_maxit = 1, iterations = 99, initial_regions = vector("numeric"), scale_method = "standardize", distance_method = "euclidean", seed = 123456789, cpu_threads = 6, rdist = numeric() )
sfj |
An sf (simple feature) object. |
varcol |
The variable selected to calculate spatial lag, which is a character. |
wt |
(optional) The spatial weights object,which can use |
boundvar |
A numeric vector of selected bounding variable. |
min_bound |
A minimum value that the sum value of bounding variable int each cluster should be greater than. |
cooling_rate |
(optional) The cooling rate of a simulated annealing algorithm. Defaults to 0.85. |
sa_maxit |
(optional) The number of iterations of simulated annealing. Defaults to 1. |
iterations |
(optional) The number of iterations of greedy algorithm. Defaults to 99. |
initial_regions |
(optional) The initial regions that the local search starts with. Default is empty. means the local search starts with a random process to "grow" clusters. |
scale_method |
(optional) One of the scaling methods 'raw', 'standardize', 'demean', 'mad', 'range_standardize', 'range_adjust' to apply on input data. Default is 'standardize' (Z-score normalization). |
distance_method |
(optional) The distance method used to compute the distance betwen observation i and j. Defaults to "euclidean". Options are "euclidean" and "manhattan" |
seed |
(optional) The seed for random number generator. Defaults to 123456789. |
cpu_threads |
(optional) The number of cpu threads used for parallel computation.Default is 6. |
rdist |
(optional) The distance matrix (lower triangular matrix, column wise storage). |
A names list with names "Clusters", "Total sum of squares", "Within-cluster sum of squares", "Total within-cluster sum of squares", and "The ratio of between to total sum of squares".
Wenbo Lv [email protected]
library(sf) guerry = read_sf(system.file("extdata", "Guerry.shp", package = "rgeoda")) guerry_clusters = st_maxp_sa(guerry,c('Crm_prs','Crm_prp','Litercy','Donatns', 'Infants','Suicids'),boundvar = 'Pop1831',min_bound = 3236.67) guerry_clusters
library(sf) guerry = read_sf(system.file("extdata", "Guerry.shp", package = "rgeoda")) guerry_clusters = st_maxp_sa(guerry,c('Crm_prs','Crm_prp','Litercy','Donatns', 'Infants','Suicids'),boundvar = 'Pop1831',min_bound = 3236.67) guerry_clusters
A wrapper function for rgeoda::maxp_tabu()
.The max-p-region problem is a special case
of constrained clustering where a finite number of geographical areas are aggregated into
the maximum number of regions (max-p-regions), such that each region is geographically
connected and the clusters could maximize internal homogeneity.
st_maxp_tabu( sfj, varcol, wt = NULL, boundvar, min_bound, tabu_length = 10, conv_tabu = 10, iterations = 99, initial_regions = vector("numeric"), scale_method = "standardize", distance_method = "euclidean", seed = 123456789, cpu_threads = 6, rdist = numeric() )
st_maxp_tabu( sfj, varcol, wt = NULL, boundvar, min_bound, tabu_length = 10, conv_tabu = 10, iterations = 99, initial_regions = vector("numeric"), scale_method = "standardize", distance_method = "euclidean", seed = 123456789, cpu_threads = 6, rdist = numeric() )
sfj |
An sf (simple feature) object. |
varcol |
The variable selected to calculate spatial lag, which is a character. |
wt |
(optional) The spatial weights object,which can use |
boundvar |
A numeric vector of selected bounding variable. |
min_bound |
A minimum value that the sum value of bounding variable int each cluster should be greater than. |
tabu_length |
(optional) The length of a tabu search heuristic of tabu algorithm. Defaults to 10. |
conv_tabu |
(optional): The number of non-improving moves. Defaults to 10. |
iterations |
(optional) The number of iterations of greedy algorithm. Defaults to 99. |
initial_regions |
(optional) The initial regions that the local search starts with. Default is empty. means the local search starts with a random process to "grow" clusters. |
scale_method |
(optional) One of the scaling methods 'raw', 'standardize', 'demean', 'mad', 'range_standardize', 'range_adjust' to apply on input data. Default is 'standardize' (Z-score normalization). |
distance_method |
(optional) The distance method used to compute the distance betwen observation i and j. Defaults to "euclidean". Options are "euclidean" and "manhattan" |
seed |
(optional) The seed for random number generator. Defaults to 123456789. |
cpu_threads |
(optional) The number of cpu threads used for parallel computation.Default is 6. |
rdist |
(optional) The distance matrix (lower triangular matrix, column wise storage). |
A names list with names "Clusters", "Total sum of squares", "Within-cluster sum of squares", "Total within-cluster sum of squares", and "The ratio of between to total sum of squares".
Wenbo Lv [email protected]
library(sf) guerry = read_sf(system.file("extdata", "Guerry.shp", package = "rgeoda")) guerry_clusters = st_maxp_tabu(guerry,c('Crm_prs','Crm_prp','Litercy','Donatns', 'Infants','Suicids'),boundvar = 'Pop1831',min_bound = 3236.67) guerry_clusters
library(sf) guerry = read_sf(system.file("extdata", "Guerry.shp", package = "rgeoda")) guerry_clusters = st_maxp_tabu(guerry,c('Crm_prs','Crm_prp','Litercy','Donatns', 'Infants','Suicids'),boundvar = 'Pop1831',min_bound = 3236.67) guerry_clusters
A wrapper function for rgeoda::redcap()
.REDCAP (Regionalization with dynamically constrained agglomerative clustering and partitioning)
is developed by D. Guo (2008). Like SKATER, REDCAP starts from building a spanning tree with 4 different ways (single-linkage, average-linkage,
ward-linkage and the complete-linkage). The single-linkage way leads to build a minimum spanning tree. Then,REDCAP provides 2 different ways
(first-order and full-order constraining) to prune the tree to find clusters. The first-order approach with a minimum spanning tree is exactly
the same with SKATER. In GeoDa and pygeoda, the following methods are provided: \* First-order and Single-linkage \* Full-order and Complete-linkage
\* Full-order and Average-linkage \* Full-order and Single-linkage \* Full-order and Ward-linkage.
st_redcap( sfj, varcol, k, wt = NULL, boundvar = NULL, method = "fullorder-averagelinkage", min_bound = 0, scale_method = "standardize", distance_method = "euclidean", seed = 123456789, cpu_threads = 6, rdist = numeric() )
st_redcap( sfj, varcol, k, wt = NULL, boundvar = NULL, method = "fullorder-averagelinkage", min_bound = 0, scale_method = "standardize", distance_method = "euclidean", seed = 123456789, cpu_threads = 6, rdist = numeric() )
sfj |
An sf (simple feature) object. |
varcol |
The variable selected to calculate spatial lag, which is a character. |
k |
The number of clusters. |
wt |
(optional) The spatial weights object,which can use |
boundvar |
(optional) A data frame / tibble with selected bound variable. |
method |
(optional) "firstorder-singlelinkage", "fullorder-completelinkage", "fullorder-averagelinkage"(default),"fullorder-singlelinkage", "fullorder-wardlinkage" |
min_bound |
(optional) A minimum bound value that applies to all clusters. |
scale_method |
(optional) One of the scaling methods 'raw', 'standardize', 'demean', 'mad', 'range_standardize', 'range_adjust' to apply on input data. Default is 'standardize' (Z-score normalization). |
distance_method |
(optional) The distance method used to compute the distance between observation i and j. Defaults to "euclidean". Options are "euclidean" and "manhattan". |
seed |
(int,optional) The seed for random number generator. Defaults to 123456789. |
cpu_threads |
(optional) The number of cpu threads used for parallel computation. |
rdist |
(optional) The distance matrix (lower triangular matrix, column wise storage). |
A names list with names "Clusters", "Total sum of squares", "Within-cluster sum of squares", "Total within-cluster sum of squares", and "The ratio of between to total sum of squares".
Wenbo Lv [email protected]
library(sf) guerry = read_sf(system.file("extdata", "Guerry.shp", package = "rgeoda")) guerry_clusters = st_redcap(guerry,c('Crm_prs','Crm_prp','Litercy','Donatns','Infants','Suicids'), 4,method = "fullorder-completelinkage") guerry_clusters
library(sf) guerry = read_sf(system.file("extdata", "Guerry.shp", package = "rgeoda")) guerry_clusters = st_redcap(guerry,c('Crm_prs','Crm_prp','Litercy','Donatns','Infants','Suicids'), 4,method = "fullorder-completelinkage") guerry_clusters
A wrapper function for rgeoda::schc()
.Spatially constrained hierarchical clustering is
a special form of constrained clustering, where the constraint is based on contiguity (common borders).
The method builds up the clusters using agglomerative hierarchical clustering methods: single linkage,
complete linkage, average linkage and Ward's method (a special form of centroid linkage). Meanwhile,
it also maintains the spatial contiguity when merging two clusters.
st_schc( sfj, varcol, k, wt = NULL, boundvar = NULL, method = "average", min_bound = 0, scale_method = "standardize", distance_method = "euclidean", rdist = numeric() )
st_schc( sfj, varcol, k, wt = NULL, boundvar = NULL, method = "average", min_bound = 0, scale_method = "standardize", distance_method = "euclidean", rdist = numeric() )
sfj |
An sf (simple feature) object. |
varcol |
The variable selected to calculate spatial lag, which is a character. |
k |
The number of clusters. |
wt |
(optional) The spatial weights object,which can use |
boundvar |
(optional) A data frame / tibble with selected bound variable. |
method |
(optional) "single", "complete", "average"(default),"ward". |
min_bound |
(optional) A minimum bound value that applies to all clusters. |
scale_method |
(optional) One of the scaling methods 'raw', 'standardize', 'demean', 'mad', 'range_standardize', 'range_adjust' to apply on input data. Default is 'standardize' (Z-score normalization). |
distance_method |
(optional) The distance method used to compute the distance between observation i and j. Defaults to "euclidean". Options are "euclidean" and "manhattan". |
rdist |
(optional) The distance matrix (lower triangular matrix, column wise storage). |
A names list with names "Clusters", "Total sum of squares", "Within-cluster sum of squares", "Total within-cluster sum of squares", and "The ratio of between to total sum of squares".
Wenbo Lv [email protected]
library(sf) guerry = read_sf(system.file("extdata", "Guerry.shp", package = "rgeoda")) guerry_clusters = st_schc(guerry,c('Crm_prs','Crm_prp','Litercy','Donatns','Infants','Suicids'), 4,method = "complete") guerry_clusters
library(sf) guerry = read_sf(system.file("extdata", "Guerry.shp", package = "rgeoda")) guerry_clusters = st_schc(guerry,c('Crm_prs','Crm_prp','Litercy','Donatns','Infants','Suicids'), 4,method = "complete") guerry_clusters
A wrapper function for rgeoda::skater()
.SKATER forms clusters by spatially
partitioning data that has similar values for features of interest.
st_skater( sfj, varcol, k, wt = NULL, boundvar = NULL, min_bound = 0, scale_method = "standardize", distance_method = "euclidean", seed = 123456789, cpu_threads = 6, rdist = numeric() )
st_skater( sfj, varcol, k, wt = NULL, boundvar = NULL, min_bound = 0, scale_method = "standardize", distance_method = "euclidean", seed = 123456789, cpu_threads = 6, rdist = numeric() )
sfj |
An sf (simple feature) object. |
varcol |
The variable selected to calculate spatial lag, which is a character. |
k |
The number of clusters. |
wt |
(optional) The spatial weights object,which can use |
boundvar |
(optional) A data frame / tibble with selected bound variable. |
min_bound |
(optional) A minimum bound value that applies to all clusters. |
scale_method |
(optional) One of the scaling methods 'raw', 'standardize', 'demean', 'mad', 'range_standardize', 'range_adjust' to apply on input data. Default is 'standardize' (Z-score normalization). |
distance_method |
(optional) The distance method used to compute the distance between observation i and j. Defaults to "euclidean". Options are "euclidean" and "manhattan". |
seed |
(int,optional) The seed for random number generator. Defaults to 123456789. |
cpu_threads |
(optional) The number of cpu threads used for parallel computation. |
rdist |
(optional) The distance matrix (lower triangular matrix, column wise storage). |
A names list with names "Clusters", "Total sum of squares", "Within-cluster sum of squares", "Total within-cluster sum of squares", and "The ratio of between to total sum of squares".
Wenbo Lv [email protected]
library(sf) guerry = read_sf(system.file("extdata", "Guerry.shp", package = "rgeoda")) guerry_clusters = st_skater(guerry,c('Crm_prs','Crm_prp','Litercy','Donatns','Infants','Suicids'),4) guerry_clusters
library(sf) guerry = read_sf(system.file("extdata", "Guerry.shp", package = "rgeoda")) guerry_clusters = st_skater(guerry,c('Crm_prs','Crm_prp','Litercy','Donatns','Infants','Suicids'),4) guerry_clusters
Warpping the summary()
function for spatial weights
st_summary(wt, ...)
st_summary(wt, ...)
wt |
A Weight object |
... |
summary optional parameters |
A summary description of an instance of Weight-class
Wenbo Lv [email protected]
## Not run: library(sf) guerry_path = system.file("extdata", "Guerry.shp", package = "rgeoda") guerry = read_sf(guerry_path) queen_w = tidyrgeoda::st_weights(guerry,'contiguity') st_summary(queen_w) ## End(Not run)
## Not run: library(sf) guerry_path = system.file("extdata", "Guerry.shp", package = "rgeoda") guerry = read_sf(guerry_path) queen_w = tidyrgeoda::st_weights(guerry,'contiguity') st_summary(queen_w) ## End(Not run)
Create a spatial weights
st_weights(sfj, weight = NULL, ...)
st_weights(sfj, weight = NULL, ...)
sfj |
An sf (simple feature) object. |
weight |
The method used to create spatial weights,which has to be one of 'contiguity', 'distance', 'knn', 'kernel', 'kernel_knn'. |
... |
Other arguments to construct spatial weight, see 'tidyrgeoda::st_contiguity_weights','tidyrgeoda::st_distance_weights', 'tidyrgeoda::st_knn_weights','tidyrgeoda::st_kernel_weights', 'tidyrgeoda::st_kernel_knn_weights'. |
An instance of rgeoda Weight-class.
Wenbo Lv [email protected]
guerry_path = system.file("extdata", "Guerry.shp", package = "rgeoda") guerry = sf::read_sf(guerry_path) st_weights(guerry,'kernel_knn',6)
guerry_path = system.file("extdata", "Guerry.shp", package = "rgeoda") guerry = sf::read_sf(guerry_path) st_weights(guerry,'kernel_knn',6)
Save spatial weights to a file
write_geoda(wt, dsn, id_vec = NULL, layer = NULL)
write_geoda(wt, dsn, id_vec = NULL, layer = NULL)
wt |
A Weight object |
dsn |
The path of an output weights file |
id_vec |
(optional) Defines the unique value of each observation when saving a
weights file. Default is |
layer |
(optional) The name of the layer of input dataset,default is |
A boolean value indicates if save successfully or failed
Wenbo Lv [email protected]